国产精品高清免费网站-国产精品高清2021在线-国产精品福利在线播放-国产精品福利影院-色黄视频在线观看-色狐视频

學(xué)術(shù)活動(dòng)
當(dāng)前位置:首頁(yè) ? 學(xué)術(shù)活動(dòng) ?

華南經(jīng)濟(jì)論壇第269期:侯成瀚副教授講座

2019-10-28 10:06:00 來源:院科研辦 點(diǎn)擊: 收藏本文

題目:Macroeconomic Forecasting with Large Bayesian VARs: Global-local Priors and the Illusion of Sparsity

主講人:侯成瀚 湖南大學(xué)經(jīng)濟(jì)管理研究中心副教授

時(shí)間:2019年1028(周一)下午3:00

地點(diǎn):學(xué)院301會(huì)議室

 

 

摘要:A class of global-local hierarchical shrinkage priors for estimating large Bayesian vector auto-regressions (BVARs) has recently been proposed. We question whether three such priors: Dirichlet-Laplace, Horseshoe and Normal-Gamma, can systematically improve upon the forecast accuracy of two commonly used benchmarks: hierarchical Minnesota prior and stochastic search variable selection prior (SSVS), when predicting key macroeconomic variables. Using small and large data sets, both point and density forecasts suggest that the answer is no. Instead, our results indicate that a hierarchical Minnesota prior remains a solid practical choice when forecasting macroeconomic variables. In light of existing optimality results, a possible explanation for our finding is that macroeconomic data is not sparse, but instead dense.


侯成瀚副教授簡(jiǎn)介.pdf


歡迎師生積極參加!